
22 The Delphi Magazine Issue 24

Surviving Client/Server:
Credit Payments, Part 2
by Steve Troxell

Last month we started looking at
a credit payment processing

system with a few twists. I’ll briefly
recap the requirements of the sys-
tem. A customer could have one or
more outstanding credits. A single
payment could be applied to any
one, some, or all of the customer’s
outstanding credits. For example, a
$3500 payment is recorded as a sin-
gle payment but could be applied
to pay off a $1000 credit and a
$2500 credit.

Further, a payment can be com-
posed of different types of cur-
rency: cash, personal checks,
money order, cashier’s check, etc.
Each element of the payment must
be distinguished in the database
and any portion of these elements
may be freely disbursed across any
of the credits being paid off. Con-
tinuing with the example above, a
$3500 payment consists of $900 in
cash, $2100 in the form of one per-
sonal check and $500 in the form of
one cashier’s check. The payment
is applied to the two credits as fol-
lows: the $1000 credit is paid off
with $500 in cash and $500 from the
personal check; the $2500 credit is
paid off with the remaining $400 in
cash, $1600 from the personal
check and the $500 cashier’s
check. All of this must be tracked
and all of this is considered a single
payment.

Last time, we discussed ways to
handle the issuance of the credits
and handling the different payment
methods (check, cash, etc) in the
payment screen. This month we’ll
complete the payment processing
by covering the two-dimensional
allocation of the payment across
multiple methods and multiple
credits.

The main payment screen is
shown in Figure 1. The user selects
one or more credits to apply the
payment to from the grid at the
top. The totals of the various

methods of payment are entered in
the grid at the bottom.

Now the challenge becomes how
to distribute the payment given in
the lower grid across the selected
credits in the upper grid. For that
we click the Allocate Payment but-
ton and reveal the screen shown in
Figure 2. The upper grid is read
only and updates automatically. It
shows the breakdown of the pay-
ment by method and how much

remains in each payment method
“bucket” after allocating payment
to the credits shown in the lower
grid. The lower grid lists each of
the credits to which this payment
is applied and allows the user to
enter the portion of each payment
method “bucket” to disburse to
each credit.

As amounts are entered in the
lower grid, the Amount Remaining
entries for the payment methods

➤ Figure 1

create table Credits
(
CreditNo integer not null primary key,
Status char(1) default ‘V’ not null,
CustNo integer not null,
Amount float default 0 not null,
BalanceDue float default 0 not null,
IssueDateTime date default ‘now’ not null

);
create table Payments
(
PaymentNo integer not null primary key,
CustNo integer not null,
Amount float default 0 not null,
PaymentDateTime date default ‘now’ not null

);
create table PaymentCredits
(
PaymentNo integer not null,
CreditNo integer not null,
Amount float not null,
BalanceDue float not null,
primary key (PaymentNo, CreditNo)

);
create table PaymentAllocation
(
PaymentNo integer not null,
CreditNo integer not null,
PayMethodCode char(2) not null,
Amount float not null,
primary key (PaymentNo, CreditNo, PayMethodCode)

);

➤ Listing 1

August 1997 The Delphi Magazine 23

and the credits are automatically
updated. This screen has been par-
tially filled out. In a real system, er-
rors would be generated if the user
tried to post this screen and the en-
tire payment was not allocated out
to all the credits or any of the

Amount Remaining values went nega-
tive. For example, in Figure 2 the
user has over allocated the pay-
ment towards the $1000 credit.

To support this concept on the
backend, the tables that record the
payment information are a master-

detail-detail configuration. One
payment record is linked to one or
more credits to be paid, and each
of these is linked to one or more
payment amounts, one for each
payment method applied to that
credit. The table definitions are
shown in Listing 1 (I’ll repeat the
Credits table from last month for
completeness).

By way of illustration, Figures 3
and 4 show the arrangement of
data for the example given at the
beginning of this article.

Now you may think that the
amount of the payment is stored
redundantly but this was done to
facilitate reporting of this informa-
tion. Summing the amounts from
PaymentAllocation to generate the
values we’ve stored in the other ta-
bles would get awkward in SQL, so
we pre-calculate them and make a
little redundancy to simplify the
reporting end of the system.

The BalanceDue in the Payment-
Credits table can be thought of as
redundant with the BalanceDue in
the Credits table. Keep in mind
that the one in Credits always re-
flects the current balance regard-
less of how many payments have
been made. The one in Payment-
Credits always reflects the balance
at the time that particular payment
was made. This was necessary due
to a reporting requirement of the
system. If we joined to Credits to
get the balance each time, it would
be inaccurate as additional pay-
ments are made against the credit.

As you can see from the specifi-
cation of the user interface and the
layout of the payment tables, it
would be a terrible idea to have the
payment amounts post directly
into the database tables via data-
aware controls. That would pro-
duce a lot of unnecessary network
traffic and database activity, and it
would be extremely difficult to
map the data fields in the dialogs
directly to the table rows and col-
umns. Besides, all the manipula-
tion done in the Payment
Allocation dialog is worthless to
the database until the user has re-
turned to the main payment dialog
and posted the payment.

It is more effective to store all
the data for the payment dialogs in

PAYMENTS:
PAYMENTNO AMOUNT

=========== ============
1 3500

PAYMENTCREDITS:
PAYMENTNO CREDITNO AMOUNT BALANCEDUE

=========== =========== ============ ============
1 6 1000 0
1 5 2500 0

PAYMENTALLOCATION:
PAYMENTNO CREDITNO PAYMETHODCODE AMOUNT

=========== =========== ============= ===========
1 6 CS 500
1 6 CK 500
1 5 CS 400
1 5 CK 1600
1 5 TC 500

➤ Figure 4

➤ Figure 2

➤ Figure 3

24 The Delphi Magazine Issue 24

Delphi until the user is done, then
translate the internal data into
something suitable for the data-
base. In the actual application, we
used an Orpheus grid, which has
no inherent storage capacity of its
own. So I built a fairly elaborate
class structure to contain all the
payment information. Here, we’re
using TStringGrids which do hold
their own data, so we don’t need to
go to great lengths to describe a
fancy external class structure. It
doesn’t matter how the user infor-
mation is stored prior to posting to
the database, the point is that we
do hold it in the Delphi app and
programmatically post it to the
database.

One big advantage to using a
data structure to hold the payment
separate from the user-interface
controls is that it is much easier to
provide a “cancel” operation for
the Payment Allocation dialog and
abandon any changes the user may
have made to the payment alloca-
tion. But we’re going to stick with
our TStringGrids for now. We need
to keep track of which credits were
selected for payment, the payment
amounts broken down by cate-
gory, and the distribution of all the
payment methods across each of
the selected credits.

All our payment data is stored
within the two grids in the Payment
Allocation dialog (Figure 2) except
for the ID numbers of the selected
credits. For that we simply use a
TList in the allocation dialog and
use its pointer fields to hold the ID
numbers of the credits we’ve se-
lected. If we’ve created an instance
of TList called Credits, then we
would add the credit ID number
like this:

Credits.Add(Pointer(aCreditID));

typecasting the LongInt ID number
into a pointer. Now, our list simply
holds a list of integer numbers
rather than a list of pointers to
allocated memory.

OnSetEditText
With one exception, I won’t go into
details about how the data is
stored internally in the grids and
transferred between the two

dialogs, our concern here is getting
it into the database. The full source
code is available on the disk.

The one thing I would like to
point out is how the Amount Remain-
ing values are made to automati-
cally update as the user keys in
data. For this, we use the OnSet-
EditText event handler for
TStringGrid. Each time the data in a
cell changes, character by charac-
ter, the OnSetEditText event han-
dler fires and gives you an
opportunity to do something with
the cell data just changed. The pa-
rameters of OnSetEditText tell us
which cell changed as well as its
new value. Knowing this we can
simply recalculate the appropriate
totals for that row and column in
the grids.

This same technique is used on
the Main Payment Dialog (Figure
1). Whenever the user changes the
payment breakdown in the lower

grid, we must change the Totals
display on the right. Again, we use
OnSetEditText to tell us when any
grid data has changed, but in this
case we really aren’t concerned
with which cell has changed. We
simply recalculate the total pay-
ment and change the display as
shown in Listing 2.

Posting The Payment Data
To get the payment data from the
two dialogs into the data tables re-
quires four steps.

Firstly, add a single record in the
Payments table noting the total
amount of the payment and gener-
ating a payment ID number. All the
data associated with a single pay-
ment will be marked with the same
payment ID number.

Secondly, for each credit se-
lected to pay, reduce the balance
due on the credit in the Credits ta-
ble by the amount of the payment.

procedure TfrmPayment.grdPaymentSetEditText(Sender: TObject; ACol, ARow: Longint;
const Value: string);

var
I: Integer;

begin
{ Update total payment amount }
TotalPaid := 0; { form variable }
with grdPayment do begin
for I := 1 to RowCount - 1 do
if Cells[1, I] <> ‘’ then
TotalPaid := TotalPaid + StrToFloat(Cells[1, I]);

end;
UpdateTotals; { local method to update the screen }

end;

➤ Listing 2

create procedure PaymentSave(iCustNo integer, iAmount integer)
returns (oPaymentNo integer)

as begin
oPaymentNo = gen_id(Gen_PaymentNo, 1);
insert into Payments (PaymentNo, CustNo, Amount)
values (:oPaymentNo, :iCustNo, :iAmount);

end

➤ Listing 3

create procedure PaymentCreditSave(iPaymentNo integer,
iCreditNo integer, iAmount integer)

as
declare variable NewBalance float;

begin
select BalanceDue from Credits
where CreditNo = :iCreditNo
into :NewBalance;

NewBalance = NewBalance - :iAmount;
update Credits
set BalanceDue = :NewBalance
where CreditNo = :iCreditNo;

insert into PaymentCredits (PaymentNo, CreditNo,
Amount, BalanceDue)

values (:iPaymentNo, :iCreditNo, :iAmount, :NewBalance);
end

➤ Listing 4

August 1997 The Delphi Magazine 25

Thirdly, for each credit selected
to pay, add a single record into the
PaymentCredits table, noting the
payment ID, the credit ID, the total
amount of payment applied to that
credit and the balance remaining
on the credit.

Lastly.for each different break-
down of payment (cash, check,
etc) against a single credit, add a
record to the PaymentAllocation ta-
ble noting the payment ID, the
credit ID, the code identifying the
payment method, and the amount
of that portion of the payment.

All of these steps should be
wrapped up within a single trans-
action to ensure everything is
posted consistently.

The first step is handled by the
stored procedure shown in Listing
3. We use an InterBase generator to
produce the unique payment ID
and return that to the application
so we can bind all the other pieces
of information under the same ID.

Steps 2 and 3 involve each credit
that is being paid and are handled
by the stored procedure shown in
Listing 4.

Step 4 is a simple insert into the
PaymentAllocation table and is han-
dled by a straight SQL query in the

application. Listing 5 shows how
we pull all this together. Notice
that we actually add the Payment-
Allocation records before the Pay-
mentCredits record in order to give
us the opportunity to sum up the
payment total for the credit.

Conclusion
Well, that wraps things up for my
little tour around our credit pay-
ment system. My hope is that
you’ve picked up a few odds and
ends for the reasoning of some of

the choices made here. In next
month’s column I’ll begin to look at
the new database access compo-
nent hierarchy in Delphi 3 and how
we may derive custom dataset
classes.

Steve Troxell is a Senior Software
Engineer with TurboPower Soft-
ware. He can be reached by email
at stevet@turbopower.com or on
CompuServe at STroxell.

procedure TfrmPayment.btnPostClick(Sender: TObject);
var
PaymentNo: LongInt;
Amount,
TotalPaidThisCredit: LongInt;
C, P: Integer;

begin
with dmDataModule.dbDemo do begin
StartTransaction;
try
{ post the main payment record }
with dmDataModule.spPaymentSave do begin
ParamByName(‘iCustNo’).AsInteger := CustomerNo;
{note TotalPaid was calculated in Listing 2}
ParamByName(‘iAmount’).AsFloat := TotalPaid;
ExecProc;
PaymentNo :=
ParamByName(‘oPaymentNo’).AsInteger;

end;
{ Post the payment amounts at finest granularity }
with frmPaymentAllocation do begin
with grdCredits do begin
{ for each credit selected to pay }
for C := FixedRows to RowCount - 1 do begin
TotalPaidThisCredit := 0;
{ for each payment method for that credit }
for P := FixedCols to ColCount - 1 do begin
Amount := GetCellAmount(Cells[P, C]);
if Amount <> 0 then
with dmDataModule.qryPaymentAllocSave do
begin
ParamByName(‘PaymentNo’).AsInteger :=
PaymentNo;

ParamByName(‘CreditNo’).AsInteger :=
LongInt(Credits[C - FixedRows]);

ParamByName(‘PayMethodCode’).AsString :=
PChar(dmDataModule.
PaymentMethodsList.Objects[
P - FixedCols]);

ParamByName(‘Amount’).AsFloat :=
Amount;

Inc(TotalPaidThisCredit, Amount);
ExecSQL;

end;
end;
if TotalPaidThisCredit <> 0 then
with dmDataModule.spPaymentCreditSave do
begin
ParamByName(‘iPaymentNo’).AsInteger :=
PaymentNo;

ParamByName(‘iCreditNo’).AsInteger :=
LongInt(Credits[C - FixedRows]);

ParamByName(‘iAmount’).AsFloat :=
TotalPaidThisCredit;

ExecProc;
end;

end;
end;

end;
Commit;

except
Rollback;
raise;

end;
end;

end;

➤ Listing 5

	OnSetEditText
	Posting The Payment Data
	Conclusion

